- Ultimately, more research is needed to fully understand the potential risks of TiO2 in water supplies and to develop effective strategies for mitigating those risks. By staying informed and making informed choices, we can help ensure that TiO2 does not pose a threat to human health or the environment.
Free Sample TiO2 DongFang R5566 Titanium Dioxide
The California plaintiff is apparently not the only one concerned about titanium dioxide. The European Union recently banned its use citing concerns about serious health consequences.
Fengchen Group is a leading supplier of Lithopone B301, Lithopone B311 powder from China. We specialize in wholesale and bulk amounts, ensuring all our clients have the right supplier of Lithopone B301, Lithopone B311 powder when they need it. When you are going to buy or purchase Lithopone B301, Lithopone B311 powder, please turn to Fengchen Group.
4. Technical Support and Service A collaborative relationship with suppliers can greatly enhance the user experience. Suppliers that provide technical support and advice about potential applications or formulations can add significant value to their customers.
Basic Information
In 2022, a year after the EFSA recommended against the use of E171, the Food Standards Australia New Zealand (FSANZ) conducted its own reassessment of titanium dioxide as a food additive. The agency concluded that titanium dioxide was indeed safe to use as a food additive. The United Kingdom and Canada came to similar conclusions.
Yes. According to the FDA and other regulatory agencies globally, “titanium dioxide may be safely used for coloring foods”. Titanium dioxide is safe to use, and the FDA provides strict guidance on how much can be used in food. The amount of food-grade titanium dioxide that is used is extremely small; the FDA has set a limit of 1 percent titanium dioxide for food. There is currently no indication of a health risk at this level of exposure through the diet.

This food chemical has been used in food for more than half a century, but recent studies show it may be harmful.
Exposure routes are the pathways that allow ingredients to enter our bodies. Primary exposure routes include:



0.5% Max
Another key aspect of titanium dioxide manufacturing is research and development. With advancements in technology and the constant demand for higher-performing products, manufacturers must invest in research to stay ahead of the competition. This includes developing new formulations, improving production processes, and exploring innovative applications for titanium dioxide.
In a 2020 study published in the Journal of Trace Elements in Medicine and Biology, researchers conducted an in vitro experiment to analyze the effects of TiO2 nanoparticles on a human neuroblastoma (SH-SY5Y) cell line. The scientists evaluated “reactive oxygen species (ROS) generation, apoptosis, cellular antioxidant response, endoplasmic reticulum stress and autophagy.” The results showed that exposure to the nanoparticles “induced ROS generation in a dose dependent manner, with values reaching up to 10 fold those of controls. Nrf2 nuclear localization and autophagy also increased in a dose dependent manner. Apoptosis increased by 4- to 10-fold compared to the control group, depending on the dose employed.”
The market for anatase titanium dioxide has expanded significantly over the years, driven by growing demand from various sectors. Manufacturers are now focusing on optimizing the production processes to enhance the quality and performance of anatase TiO2. This includes advancements in synthesis methods to produce nanoparticles with improved dispersion and stability. Companies are investing in research and development to innovate new applications, particularly in the fields of renewable energy and sustainable materials.
The overseas demand for Chinese TiO2 rose up by about 17% in 2016, which enabled an export increase of the manufacturers in China. As a fact, Chinese TiO2 is highly demanded in overseas markets, due to the comparable small price of the suppliers. The export of TiO2 is responsible for about one-third of the total output in China.
The European region struggled with the rising inflation that caused energy prices to rise leading to higher production costs thereby, negatively impacting the prices of titanium dioxide. The transportation routes were further disrupted along with the uncertainties in the construction and automotive industries. In addition to this, the offtakes and purchasing behaviour of the end-user consumers also declined, fueling the declining price trendss for titanium dioxide.


Prof Maged Younes, Chair of EFSA’s expert Panel on Food Additives and Flavourings (FAF), said: “Taking into account all available scientific studies and data, the Panel concluded that titanium dioxide can no longer be considered safe as a food additive . A critical element in reaching this conclusion is that we could not exclude genotoxicity concerns after consumption of titanium dioxide particles. After oral ingestion, the absorption of titanium dioxide particles is low, however they can accumulate in the body”.
Freshwater algae show low-to-moderate susceptibility to TiO2 exposure, with more pronounced toxic effects in the presence of UV irradiation. It has also been shown that nano-sized TiO2 is significantly more toxic to algae Pseudokirchneriella sub-capitata than submicron-sized TiO2. Hund-Rinke and Simon reported that UV irradiated 25 nm TiO2 NPs are more toxic to green freshwater algae Desmodesmus subspicatus than UV irradiated 50 nm particles, which is in agreement with Hartmann et al. UV irradiated TiO2 NPs also inactivated other algae species such as Anabaena, Microcystis, Melsoira and Chroococcus. It was demonstrated that smaller particles have a greater potential to penetrate the cell interior than submicron-sized particles and larger aggregates. Studies have shown that the amount of TiO2 adsorbed on algal cells can be up to 2.3 times their own weight.
How pure TiO2 is extracted from titanium-containing molecules depends on the composition of the original mineral ores or feedstock. Two methods are used to manufacture pure TiO2: a sulphate process and a chloride process.
Lithopone market, by region
Lithopone, C.I. Pigment White 5, is a mixture of inorganic compounds, widely used as a white pigment powder. It is composed of a mixture of barium sulfate and zinc sulfide. These insoluble compounds blend well with organic compounds and confer opacity. It was made popular by the cheap production costs, greater coverage. Related white pigments include titanium dioxide, zinc oxide (zinc white), zinc sulfide, and white lead.