
On the other hand, the U.S. Food and Drug Administration (FDA) in their Final Administrative Order on Sunscreen Drug Products posted in September 2021 still accepts titanium dioxide up to 25% in the list of Generally Recognized As Safe and Effective (GRASE) in the main document, without further clarification on what kind or size of particles [9]. However, on page 24 (Sunscreen containing nanomaterials) FDA clearly “distinguish nanomaterials from other forms of these ingredients'' (zinc oxide and titanium dioxide) and ask for comments on “any particular nanomaterials that you believe should not be permitted for use in OTC sunscreen products”. To the best of our knowledge, this Agency did not ban the use of nanoparticulate titanium dioxide in any form, even though it is mentioned on page 34 that the anatase form is the more photoactive one, due to the lack of evidence with real sunscreens OTC (over the counter) in vivo. Moreover, other regulations in Latin America (MERCOSUR agreement, 2006) do not state clearly their position on the use of nanoparticulate TiO2NPs [10].
Some research in rats has observed titanium dioxide accumulation in the liver, spleen, and kidneys. That said, most studies use doses higher than what you would typically consume, making it difficult to know if these effects would happen in humans (16Trusted Source).
Anyway, it doesn't matter if it reflects or absorbs, Titanium Dioxide is a pretty awesome sunscreen agent for two main reasons: it gives a nice broad spectrum coverage and it's highly stable. Its protection is very good between 290 - 350 nm (UVB and UVA II range), and less good at 350-400 nm (UVA I) range. Regular sized Titanium Dioxide also has a great safety profile, it's non-irritating and is pretty much free from any health concerns (like estrogenic effect worries with some chemical filters).
Anatase titanium dioxide (TiO2) is a key inorganic compound renowned for its exceptional photocatalytic properties, stability, and versatility in various applications. Among the various crystalline forms of titanium dioxide, anatase is particularly favored in industries ranging from paints and coatings to cosmetics and solar cells. The rise of anatase titanium dioxide manufacturers is a testament to the compound’s increasing importance in modern technology and environmental applications.
Nano-sized P25TiO2NPs were kindly donated by Dr. Scaiano, Ottawa University (Canada). Riboflavin (vitamin B2) was from Sigma and ascorbic acid (vitamin C) and KBr (for IR pills) were from Cicarelli. Base cream for the animal experiments was purchased from Todo Droga and the LED panel was built ad hoc.
How can food businesses comply with this Regulation?
Titanium dioxide overnight news
JECFA previously assessed titanium dioxide at its 13th meeting, at which time the expert committee assigned a “not specified” ADI for the additive due to an absence of significant absorption and a lack of toxicological effects in the available experimental animal and human studies. Since its original evaluation by JECFA, titanium dioxide has become a public point of contention, with its ban being introduced (and then subsequently withdrawn) in California legislation in 2023, a legal battle playing out in the EU over the additive’s ban and classification as a carcinogen in 2022, and the European Food Safety Authority (EFSA) calling titanium dioxide unsafe. However, supporters of titanium dioxide say that claims about its dangers are founded in unreliable studies, and some recent research has supported its safety as a food additive.




In general, nanoparticles have been shown to accumulate in the body, particularly in organs in the gastrointestinal tract, along with the liver, spleen, and capillaries of the lungs.
The evidence also suggests that the toxicity of TiO2 particles may be reduced when eaten as part of the diet. This is because proteins and other molecules in a person's diet can bind to the TiO2 particles. This binding alters the physical and chemical properties of the particles, which influences how they interact with cells, tissues and organs.

A study published in the Journal of Agricultural and Food Chemistry in 2019 sought to examine the effects of titanium dioxide on intestinal inflammation. Researchers did this by feeding rats titanium dioxide nanoparticles and found that, after the course of two to three months, the animals had lower body weights and induced intestinal inflammation. The researchers also found the nanoparticles altered gut microbiota composition and aggravated chronic colitis. The rats also experienced reduced populations of CD4+T cells (which are cells that help organize immune responses by prompting other immune cells to fight infection), regulatory T cells, and white blood cells in mesenteric lymph nodes. The researchers wrote: “Dietary TiO2 nanoparticles could interfere with the balance of the immune system and dynamic of gut microbiome, which may result in low-grade intestinal inflammation and aggravated immunological response to external stimulus, thus introducing potential health risk.”
