Among the raw materials for coating production, titanium dioxide is more ideal, followed by lithopone. The covering power of lithopone is only that of titanium dioxide, and the price of lithopone is much lower than that of titanium dioxide, so lithopone still occupies a large market share.
After conducting a review of all the relevant available scientific evidence, EFSA concluded that a concern for genotoxicity of TiO2 particles cannot be ruled out. Based on this concern, EFSA’s experts no longer consider titanium dioxide safe when used as a food additive. This means that an Acceptable Daily Intake (ADI ) cannot be established for E171.



The properties of lithopone are very suitable for use in the production of coatings. Because the ingredients of lithopone are zinc sulfide and barium sulfate, and the more zinc sulfide content, the stronger its covering power. This indicates a paint product with strong white covering power. It is different from water in that it reacts with acid but does not react with alkali. It has a wide range of uses. Because its structural properties are similar to titanium dioxide and its price is relatively cheap, it can also be used as a substitute for some titanium dioxide. Lithopone can be used for coloring paints, inks, pigments, rubber, paper, leather, enamel, etc.
Applications:
Titanium dioxide in sunscreen
JECFA also evaluated estimates of dietary exposure to titanium dioxide, estimating the maximum 95th percentile of exposure to be 10 mg/kg BW per day. Overall, considering the low oral absorption of titanium dioxide as a food additive, the committee reaffirmed the ADI “not specified” that was established at the 13th meeting.

Description:
In 2016, the European Food Safety Authority, or EFSA, assessed titanium dioxide and determined that the evidence available at the time didn’t conclusively point to any health problems for consumers.
Lithopone B301, Lithopone B311 powder is widely used in coatings, printing ink, rubber, plastic industry, etc.
In the European domestic market, however, the cost support from increasing freight charges kept the valuation of imported volumes high, and the average CFR NWE discussions were assessed at USD 3800 per tonne in the fourth quarter of 2021.
One of the key responsibilities of titanium dioxide manufacturers is to produce high-quality products that meet the stringent requirements of their customers. This involves carefully sourcing raw materials, employing efficient production processes, and conducting rigorous quality control measures to ensure that the final product meets the necessary specifications.
What titanium dioxide is really emblematic of ... is the failure of FDA to look back at these old decisions and ask whether its decisions that were made in this case ... 56 years ago (in the 1966 approval) still hold up, he said.
Titanium dioxide is added to some food packaging to preserve the shelf life of a product.
The conventional surface treatment methods of titanium alloy include glow discharge plasma deposition, oxygen ion implantation, hydrogen peroxide treatment, thermal oxidation, sol-gel method, anodic oxidation, microarc oxidation, laser alloying, and pulsed laser deposition. These methods have different characteristics and are applied in different fields. Glow discharge plasma deposition can get a clean surface, and the thickness of the oxide film obtained is 2 nm to 150 nm [2–8]. The oxide film obtained from oxygen ion implantation is thicker, about several microns [9–14]. Hydrogen peroxide treatment of titanium alloy surface is a process of chemical dissolution and oxidation [15, 16]. The dense part of the oxide film is less than 5 nm [17–21]. The oxide film generated from the thermal oxidation method has a porous structure, and its thickness is commonly about 10-20 μm [22–25]. The oxide film from the sol-gel method is rich in Ti-OH, a composition that could induce apatite nucleation and improve the combining of implants and bone. It has a thickness of less than 10 μm [26–28]. Applied with the anodic oxidation method, the surface can generate a porous oxide film of 10 μm to 20 μm thickness [29–31]. Similarly, the oxide film generated from the microarc oxidation method is also porous and has a thickness of 10 μm to 20 μm [32, 33].

